When $\backslash\left(a\right.$ \ne $0 \backslash$), there are two solutions to $\backslash\left(a x^{\wedge} 2+b x+c=0 \backslash\right)$ and they are $\$ \$ \mathrm{x}=\{-\mathrm{b} \backslash \mathrm{pm} \backslash$ sqrt\{b^ $2-4 a c\}$ \over $2 a\} . \$ \$$

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& a x^{2}+b x \quad=-c \\
& x^{2}+\frac{b}{a} x \quad=\frac{-c}{a} \quad \text { Divide out leading coefficient. } \\
& x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}=\frac{-c(4 a)}{a(4 a)}+\frac{b^{2}}{4 a^{2}} \quad \text { Complete the square. } \\
& \left(x+\frac{b}{2 a}\right)\left(x+\frac{b}{2 a}\right)=\frac{b^{2}-4 a c}{4 a^{2}} \quad \text { Discriminant revealed. } \\
& \left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} \\
& x+\frac{b}{2 a}=\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
& x=\frac{-b}{2 a} \pm\{C\} \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \text { There's the vertex formula. } \\
& x=\frac{-b \pm\{C\} \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

$4.56+4.56+\frac{4}{5}+4+5 i+4.56 e^{4.56 i}+\pi+\mathbb{e}+\mathbb{e}+i \mathfrak{i}+\gamma+\infty$

$$
17+29 i \in \mathbb{C}
$$

$$
\int_{0}^{1} \frac{\mathrm{dx}}{(a+1) \sqrt{x}}=\pi
$$

$$
\begin{gathered}
\int_{\mathrm{E}}(\alpha f+\beta g) \mathrm{d} \mu=\alpha \int_{\mathrm{E}} f \mathrm{~d} \mu+\beta \int_{\mathrm{E}} g \mathrm{~d} \mu \\
A=\left(\begin{array}{lll}
9 & 8 & 6 \\
1 & 2 & 7 \\
4 & 9 & 2 \\
6 & 0 & 5
\end{array}\right) \text { or } A=\left[\begin{array}{lll}
9 & 8 & 6 \\
1 & 2 & 7 \\
4 & 9 & 2 \\
6 & 0 & 5
\end{array}\right] \\
{\left[\begin{array}{ccc}
a_{11}-\lambda & \cdots & a_{1 \mathrm{n}} \\
\vdots & \ddots & \vdots \\
a_{\mathrm{n} 1} & \cdots & a_{\mathrm{nn}}-\lambda
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{\mathrm{n}}
\end{array}\right]=0} \\
\sqrt{x-3}+\sqrt{3 x}+\sqrt{\frac{\sqrt{3 x}}{x-3}}+i \frac{y}{\sqrt{2(r+x)}} \\
\sum_{n=0}^{t} f(2 n)+\sum_{n=0}^{t} f(2 n+1)=\sum_{n=0}^{2 t+1} f(n) \\
\sqrt{x^{2}}=|x|=\left\{\begin{array}{ccc}
+\mathrm{x} & , \text { if } & x>0 \\
0 & , \text { if } & x=0 \\
-\mathrm{x} & , \text { if } & x<0
\end{array}\right.
\end{gathered}
$$

$$
H(j \omega)=\left\{\begin{array}{cc|c}
x^{-j \omega \sigma_{0}} & \text { for } & \mid \omega \\
0 & \text { for } & \mid \omega
\end{array}\left|<\omega_{\sigma}\right| \begin{array}{l}
\sigma
\end{array} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right.
$$

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

CSS Paged Media Tutorial by Andreas Jung

$$
-\sum_{k=1}^{\infty} \frac{q^{k+k^{2}}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{k}\right)}=\prod_{j=0}^{\infty} \frac{1}{\left(1-q^{5 j+2}\right)\left(1-q^{5 j+3}\right)} \text {, for }|q|
$$

